

User self-simulated Scenario & Tanks adjustment.
Accurately perform calculations for all user defined loading conditions.

Maritime Software for Stability Calculation

ZEBEC LOAD MASTER

Contact Us for More Detail Tel. 02-105-4646

Email: sale@shipexpert.net

Accept MARPOL Annex I Ch.4, the IBC/BCH Code Applicable to all types of vessel.

Ship Expert

Zebec Load Master Loading & Damage Stability Software

2019 Introduction Product sheet

Zebec Loadmaster" is a Software developed by Zebec Marine Consultants & Services Pvt. Ltd which designed to function as a ship's 'Load indicator' for planning the loading sequence, calculation of intact &damage stability and longitudinal strength of any type of ship.

The Software is designed by a team of Naval Architects and Software Engineers in a logical manner, which makes it easy to use.

The Software is designed as type 3 damage stability software as per IMO guidelines and certified.

The Software is capable of handling all type of vessels which includes;

Container / General Cargo /Bulk vessel
Oil , chemical , Gas Tanker
Offshore vessel

Features Intact Scenario

Creation of Loading Condition

Equilibrium Hydrostatics Calculation

GZ Calculation

IMO Intact Stability Criteria Calculation

Roll Period Calculation

Propeller Immersion Calculation

Calculation of Hull Girder Shear Force

Calculation of Hull Girder Bending Moment

Generation of Report in .pdf Format

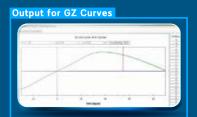
Saving of Loading Condition

Retrieving and Simulating Saved Loading Conditions

Predefined Standard Loading Condition

2D Visualization of Tanks in Profile and Plan

2D Visualization of Waterline in Profile



Stability Criteria

	Crossel Status	Actual Value
Ingrees (rad-m)	0.055	0.500
of DOF Angle (lad-in)	0.083	0.340
or DOF Angle (red int)	0.090	0.840
sple (dep.)	25.000	40.000
10 deg. (re)	9.200	1.867
	0.150	3.425
due to steady wind ideg.)	19.000	0.196
VL/AZ	1,000	1,265

Shear Force and Bending Moment

100	VOTES.	(0.3)	375	Garations Committee	30,000	700	
34	25.795	723.140	211,000	0.0004-005		OK.	100
40	344 B100	SAME SHOT		DUTYS-218	41,004	109	-
40	30.404	H11.340	4.796	2,5485-428	111.700	104	
	29.130	119-86	11176	14.095.130	14.307	Ca.	
70.0	41,000	465,4408	Jarobs	10000410	11.040	1130	-
4.1	100 1104	000 FEE	4,731	1,7771-043	24/044	Da	1
1	04.63	1-800, \$25	14410	1,640,5275	#130	OR	Stol May
	15,704	2-71A-194	16476	11/184-186	31-806	(fig	200
118	101 (200)	Mr. 755	24-140	91179-076	3.440	104	18
	90 50st-	Non-Jeen		mittin	32.007	78	

Damage Scenario

Selection of Predefined Damage Cases

Equilibrium Hydrostatics Calculation

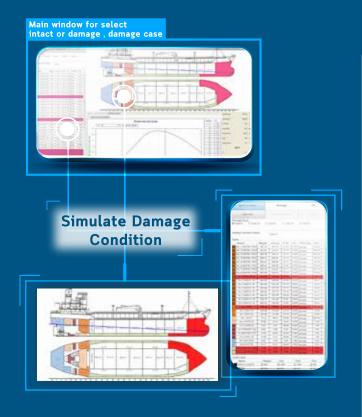
GZ Calculation

Damage Intact Stability Criteria Calculation

Roll Period Calculation

Propeller Immersion Calculation

Generation of Report in .pdf Format


Saving of Loading Condition with Damage Case

Retrieving and Simulating Saved Loading Conditions

2D Visualization of Tanks in Profile and Plan

2D Visualization of Waterline in Profile

2D Visualization of Damaged Portion in Red Color

New requirements for onboard stability instruments

Regarding to new requirements for onboard stability instruments applicable to all tankers will be effective from 1st January 2016. MARPOL Annex I Ch.4, the IBC/BCH Code and the IGC/GC Code have all been amended, requiring tankers to be fitted with a stability instrument capable of handling bothintact and damage stability. The new requirement is retroactive and applies to both new and existing ships as follows:

Ships constructed on or after 1st January 2016 at delivery

Ships constructed before 1 January 2016 at the first renewal survey on or after 1st January 2016, but no later than 1st January 2021.

Ships carrying onboard stability instruments already approved and certified by a recognized class organization, and capable of verifying both intact and damage stability to a standard acceptable to the administration, may continue to use such an instrument.

@shipexpertnet

ship_expert_technology

@ShipExpertNet

www.shipexpert.net

Ship Expert Technology Co., Ltd.

223/61 (room 65) Country Complex Tower A, 14th Flr.
Sanpawut Rd. Bangna tai, Bangna,
Bangkok 10260, Thailand